Dieta do Mediterrâneo e Hipertensão Arterial Sistêmica

Dieta mediterrânea e Hipertensão Arterial Sistêmica

Rodrigo Augusto Oliveira da Silva
Estudante de Nutrição – Estagiário do Instituto Dante Pazzanese de Cardiologia

Um estudo randomizado atual realizado na Espanha denominado de PREDIMED – Prevencion com Dieta Mediterranea revelou que a dieta do Mediterrâneo, rica em Azeite de Oliva Virgem ou castanhas, reduziu a pressão sanguinea sistólica de pacientes com alto risco cardiovascular. Neste texto, é apresentado um subestudo estrutural que avaliou o efeito da dieta do Mediterrâneo suplementada com castanhas ou azeite de oliva virgem nas propriedades da membrana do eritrócito de 36 pacientes hipertensos após 1 ano de intervenção.

PREDIMED – Protocolo de pesquisa que tem como  principal objetivo a prevenção de doenças cardiovasculares (Infartos agudos, Derrames e necrose  tecidual cardiovascular) através  da avaliação da dieta do mediterrâneo.

Pacientes selecionados de duas províncias distintas da Espanha: Sevilha e Málaga

Divididos em 3 grupos:

DDM + Azeite de Oliva Virgem ( Até 1 Litro por semana durante os 3 primeiros meses)

DDM + Castanhas (15 g de nozes, 7,5 g de Avelãs e 7,5 g de Amêndoas)

DDM associada a ingestão de baixo nível de gorduras em geral.

*DDM=Dieta do Mediterrâneo

A composição lipídica da membrana do eritrócito, as propriedades estruturais dessas membranas reconstituídas, e concentrações séricas de marcadores inflamatórios foram relatados neste texto. Depois da intervenção, o conteúdo de colesterol da membrana diminuiu, enquanto que os fosfolipídeos aumentaram em todos os grupos de dietas aplicadas; o que pode ser explicado devido a  fluidez da membrana.

A complexidade estrutural dessas membranas dificulta determinar específicas mudanças, principalmente nas funções protéicas. As alterações nas propriedades das estruturas das células sanguíneas relatadas neste texto podem refletir mudanças em outros tipos de células relacionadas com o controle da pressão sanguínea e pode apontar estatisticamente para significantes reduções na pressão sanguínea destes grupos participantes do estudo PREDIMED.

Estes dados sugerem que o estilo da dieta do Mediterrâneo afeta o metabolismo lipídico que é alterado em pacientes hipertensos, influenciando as propriedades da estrutura da membrana, afirmando os efeitos benéficos desta dieta em pacientes hipertensos.

Disponível em: http://hyper.ahajournals.org: ou

http://hyper.ahajournals.org/cgi/content/full/54/5/1143?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=mediterranean&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT

(Hypertension.2009;54:1143-1150)

                                                                                            

Referencias para estudo

1. Whelton PK. Epidemiology of hypertension. Lancet. 1994; 344: 101–106.
2. Jousilahti P, Toumilehto J, Vartiainen E, Korhonen HJ, Pitkäniemi J, Nissinen A, Puska P. Importance of risk factor clustering in coronary heart disease mortality and incidence in eastern Finland. J Cardiovasc Risk. 1995; 2: 63–70.
3. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Boudier HA, Zanchetti A; for the ESH-ESC Task Force on the Management of Arterial Hypertension. Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007; 25: 1105–1187.
4. Vicario IM, Malkova D, Lund EK, Jonson IT. Olive oil supplementation in healthy adults: effects in cell membrane fatty acid composition and platelet function. Ann Nutr Metab. 1998; 42: 160–169.
5. Perona JS, Cañizares J, Montero E, Sánchez-Dominguez JM, Ruiz-Gutierrez V. Plasma lipid modifications in elderly people after administration of two virgin oils of the same variety (Olea europea var. hojiblanca) with different triacylglycerol composition. Br J Nutr. 2003; 89: 819–826.
 6. Terés S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver JE, Escribá PV. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A. 2008; 105: 13811–13816.
7. Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Covas MI, Fiol M, Gomez-Gracia E, Lopez-Sabater MC, Vinyoles E, Aros F, Conde M, Lahoz C, Lapetra J, Saez G, Ros E. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006; 145: 1–11.
8. Zicha J, Kunes J, Devynck MA. Abnormalities of membrane function and lipid metabolism in hypertension: a review. Am J Hypertens. 1999; 12: 315–331.
9. Vazquez CM, Mate A, Angeles de la Hermosa M, Planas JM, Ruiz-Gutierrez V. Abnormalities in lipid composition of brush-border membranes isolated from renal cortex of spontaneously hypertensive rats. Am J Hypertens. 2001; 14: 578–584.
10. Carr P, Taub NA, Watts GF, Poston L. Human lymphocyte sodium-hydrogen exchange: the influences of lipids, membrane fluidity, and insulin. Hypertension. 1993; 21: 344–352.
11. Villar J, Montilla C, Muñiz-Grijalvo O, Muriana FG, Stiefel P, Ruiz-Gutiérrez V, Carneado J. Erythrocyte Na(+)-Li+ countertransport in essential hypertension: correlation with membrane lipids levels. J Hypertens. 1996; 14: 969–973.
12. Prades J, Alemany R, Perona JS, Funari SS, Vogler O, Ruiz-Gutierrez V, Escriba PV, Barcelo F. Effects of 2-hydroxyoleic acid on the structural properties of biological and model plasma membranes. Mol Membr Biol. 2008; 25: 46–57.
13. Pagnan A, Corrocher R, Ambrosio GB, Ferrari S, Guarini P, Piccolo D, Opportuno A, Bassi A, Olivieri O, Baggio G. Effects of an olive-oil-rich diet on erythrocyte membrane lipid composition and cation transport systems. Clin Sci (Lond). 1989; 76: 87–93.
14. Vázquez CM, Zanetti R, Santa-María C, Ruíz-Gutiérrez V. Effects of two highly monounsaturated oils on lipid composition and enzyme activities in rat jejunum. Biosci Rep. 2000; 20: 355–368.
15. Perona JS, Vögler O, Sánchez-Domínguez JM, Montero E, Escribá PV, Ruiz-Gutierrez V. Consumption of virgin olive oil influences membrane lipid composition and regulates intracellular signaling in elderly adults with type 2 diabetes mellitus. J Gerontol A Biol Sci Med Sci. 2007; 62: 256–263.
16. Ruiz-Gutierrez V, Muriana FJ, Guerrero A, Cert AM, Villar J. Plasma lipids, erythrocyte membrane lipids and blood pressure of hypertensive women after ingestion of dietary oleic acid from two different sources. J Hypertens. 1996; 14: 1483–1490.
17. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957; 226: 497–509.
18. Perona JS, Ruiz-Gutierrez V. Quantification of major lipid classes in human triacylglycerol-rich lipoproteins by high-performance liquid chromatography with evaporative light-scattering detection. J Sep Sci. 2004; 27: 653–659.
19. Ruiz-Gutierrez V, Montero E, Villar J. Determination of fatty acid and triacylglycerol composition of human adipose tissue. J Chromatogr. 1992; 581: 171–178.
20. Kunes J, Zicha J, Devynck MA. Erythrocyte membrane microviscosity and blood pressure in rats with salt-induced and spontaneous hypertension. J Hypertens. 1994; 12: 229–234.
21. Muriana FJ, Villar J, Ruíz-Gutiérrez V. Intake of olive oil can modulate the transbilayer movement of human erythrocyte membrane cholesterol. Cell Mol Life Sci. 1997; 53: 496–500.
22. Vazquez CM, Zanetti R, Ruiz-Gutierrez V. Lipid composition and fluidity in the jejunal brush-border membrane of spontaneously hypertensive rats: effects on activities of membrane-bound proteins. Biosci Rep. 1996; 16: 217–226.
 23. Okamoto H, Kawaguchi H, Minami M, Saito H, Yasuda H. Lipid alterations in renal membrane of stoke-prone spontaneously hypertensive rats. Hypertension. 1989; 13: 456–462.
24. Dorrance AM, Graham D, Webb RC, Fraser R, Dominiczak A. Increased membrane sphingomyelin and arachidonic acid in stroke-prone spontaneously hypertensive rats. Am J Hypertens. 2001; 14: 1149–1153.
25. Ramstedt B, Slotte JP. Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Biophys Acta. 2006; 1758: 1945–1956.
26. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000; 1: 31–39.
27. Chini B, Parenti M. G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol. 2004; 32: 325–338.
28. Insel PA, Head BP, Ostrom RS, Patel HH, Swaney JS, Tang CM, Roth DM. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci. 2005; 1047: 166–172.
 29. Slater SJ, Kelly MB, Taddeo FJ, Ho C, Rubin E, Stubbs CD. The modulation of protein kinase C activity by membrane lipid bilayer structure. J Biol Chem. 1994; 269: 4866–4871.
30. Kinnunen PKJ. On the molecular-level mechanism of peripheral protein-membrane interactions induced by lipids forming inverted nonlamellar phases. Chem Phys Lipids. 1996; 81: 151–166.
31. Pasterkamp G, Daemen M. Circulating cells: the biofactory for markers of atherosclerotic disease. Eur Heart J. 2008; 29: 2701–2702.
32. Tziakas D, Chalikias GK, Tentes IK, Stakos D, Chatzikyrirkou SV, Mitrousi K, Kortsaris AX, Karki JC, Bouloudas H. Interleukin-8 is increased in the membrane of circulating erythrocytes in patients with acute coronary syndrome. Eur Heart J. 2008; 29: 2713–2722.